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Abstract The availability of large-scale datasets has led to more effort being made
to understand characteristics of metabolic reaction networks. However, because the
large-scale data are semi-quantitative, and may contain biological variations and/or
analytical errors, it remains a challenge to construct a mathematical model with precise
parameters using only these data. The present work proposes a simple method, referred
to as PENDISC (Parameter Estimation in a Non-DImensionalized S-system with
Constraints), to assist the complex process of parameter estimation in the construc-
tion of a mathematical model for a given metabolic reaction system. The PENDISC
method was evaluated using two simple mathematical models: a linear metabolic path-
way model with inhibition and a branched metabolic pathway model with inhibition
and activation. The results indicate that a smaller number of data points and rate con-
stant parameters enhances the agreement between calculated values and time-series
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data of metabolite concentrations, and leads to faster convergence when the same
initial estimates are used for the fitting. This method is also shown to be applicable
to noisy time-series data and to unmeasurable metabolite concentrations in a net-
work, and to have a potential to handle metabolome data of a relatively large-scale
metabolic reaction system. Furthermore, it was applied to aspartate-derived amino
acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that
the mathematical model constructed satisfactorily agrees with the time-series datasets
of seven metabolite concentrations.

Keywords Biochemical Systems Theory · Parameter estimation · Mathematical
modeling · Metabolomics · Non-linear least squared regression

1 Introduction

Comprehensive methods using high-throughput analytical instruments have made it
possible to simultaneously measure cellular metabolite concentrations (or their rela-
tive quantities referenced by peak intensities or heights) (Fiehn 2002; Sawada et al.
2009; Weckwerth 2003). Using these measured values to construct a mathematical
model would enable us to carry out the in silico simulation of metabolic behaviors in
various conditions. This would, in turn, allow us to efficiently characterize a metabolic
reaction network, resulting in greater potential to further design a desired network.
However, not all metabolites in a focused pathway can be simultaneously measured,
and the measured metabolite concentrations are not yet sufficiently accurate for the
construction of a precise mathematical model, which is due to the following several
factors. First, most comprehensive analytical methods for large-scale analysis usually
provide only relative quantities, although it is better to use absolute metabolite con-
centrations to construct a detailed model. Second, in some cases, biological variations
and analytical errors are significant. This makes it difficult to identify exact metabo-
lite quantities and show clear tendency of metabolite concentrations changing over a
period in which parameter values are estimated in the process of model construction.
Third, some important metabolites (e.g., those affecting a metabolic pathway of inter-
est) may be undetectable by simultaneous analytical methods used in metabolomics,
so that the mathematical model constructed on the basis of available experimental data
may lack essential information.

The simplification of mathematical modeling using power-law representations, such
as saturable and synergistic (S)-system or generalized mass action (GMA)-system
representations in the framework of biochemical systems theory (BST) (Savageau
1969a,b, 1970; Shiraishi and Savageau 1992; Voit 2013), probably has the potential
to overcome the above problems. This is because such modeling techniques allow
us to straightforwardly formulate the mathematical equations that describe the time-
transient behaviors of metabolite concentrations in a metabolic reaction network by
means of only a metabolic pathway map comprised enzymatic reactions and regulatory
relationships. In addition, among the widely used kinetic representations, the S-system
presents a non-linear representation with the fewest number of kinetic parameters,
i.e., rate constants and kinetic orders, which significantly reduces the complexity of
constructing and analyzing the model. Even though the S-system equations allow us
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to set up equations easily with the minimum number of parameters, however, the
values of these parameters must be appropriately determined to express metabolic
behaviors. For the large-scale metabolic reaction systems, moreover, it is necessary
to determine the values of many rate constants and kinetic orders. Thus, parameter
estimation is remained as a bottleneck, or limiting procedure, in the process of model
construction.

Several methods that use time-series data of metabolite concentrations to estimate
the kinetic parameters of the S-system equations have been proposed (Chou 2006; Jia
et al. 2011; Kutalik et al. 2007). For example, the decoupling method (Chou 2006)
can reduce computational complexity in the parameter estimation. However, since this
method uses the slopes of the changes in metabolite concentrations as a part of the
relevant objective function, the estimation may strongly depend on the performance
of a data-fitting method such as an automated smoother (Vilela et al. 2007), neural
network, or polynomial fitting (Voit and Almeida 2004). A combination of the decou-
pling method with ordinary differential equation decomposition methods has recently
been proposed (Jia et al. 2011). This method seems more flexible and easy to predict
metabolic behaviors from noisy and incomplete datasets. However, a large number of
data may be required to grasp a trend in the dynamic behaviors of metabolite concen-
trations from their time-series data. Thus, the parameter estimation methods available
have advantages and disadvantages and are still under development.

The present study, therefore, proposes a simple method for constructing a math-
ematical model in an S-system equation model, in which the number of parameters
to be estimated is decreased significantly in a special case, and the probable behav-
iors of unmeasurable metabolite concentrations can also be predicted. A mathematical
model is constructed in non-dimensionalized S-system equation form, and the number
of unknown rate constants for influxes and effluxes is reduced using the constraints
derived from a network structure. Kinetic orders are fixed at a value of 0.5 or −0.5,
and the remaining rate constants are estimated by fitting calculated values to measured
metabolite concentrations.

2 Methods

2.1 S-System Equations

The evolution of intracellular metabolite concentrations, Xi , in a metabolic reaction
system can be expressed by

d Xi

dt
=

p∑

k=1

vk −
q∑

k=1

v−k (i = 1, 2, . . . , n), (1)

where t is the time; vk and v−k are the influx and efflux, respectively, of pool Xi ;
and p and q are the maximum number of influxes and effluxes. In BST, Eq. (1) is
transformed to the following S-system equations:
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d Xi

dt
= αi

n∏

j=1

X
gi j
j − βi

n∏

j=1

X
hi j
j = Vi − V−i (i = 1, 2, . . . , n), (2)

where Vi and V−i are the net influx and efflux; αi and βi are the rate constants contained
in the net influx and efflux, respectively; gi j and hi j are their kinetic orders; and n
is the number of dependent variables. The S-system equations consist of two power-
law terms, in which the local influxes and effluxes are individually aggregated into a
single power-law form (Savageau 1969a,b). Once a metabolic pathway map is given,
the symbol Xi is assigned to each metabolite concentration, and differential mass
balances are taken with respect to each metabolite concentration. This gives the S-
system differential equation model expressed by Eq. (2).

2.2 Fundamental Equations for Analysis

When the system has a steady state, Eq. (2) can be transformed to its dimensionless
form.

dxi

dt
= Ai

n∏

j=1

x
gi j
j − Bi

n∏

j=1

x
hi j
j (i = 1, 2, . . . , n), (3)

where xi (i = 1, 2, . . . , n) are the dimensionless metabolite concentrations with
respect to the steady-state metabolite concentrations X∗

i (i = 1, 2, . . . , n). These
are defined as

xi = Xi/X∗
i (i = 1, 2, . . . , n), (4)

and Ai and Bi are the following dimensionless rate constants for the influx and efflux,
respectively,

Ai = αi

X∗
i

n∏

j=1

X
∗gi j
j (i = 1, 2, . . . , n) (5)

Bi = βi

X∗
i

n∏

j=1

X
∗hi j
j (i = 1, 2, . . . , n). (6)

Since Ai = Bi (i = 1, 2, . . . , n) in a steady-state, Eq. (3) can be further simplified
to

dxi

dt
= Ai

⎛

⎝
n∏

j=1

x
gi j
j −

n∏

j=1

x
hi j
j

⎞

⎠ (i = 1, 2, . . . , n). (7)

A metabolic reaction network may contain linear, branching, and confluent struc-
tures and provides the following constraints accordingly.
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2.2.1 Linear Structure

Consider a metabolic reaction network with a linear structure consisting of the metabo-
lites Xi (i = 1, . . . , n), as shown in Fig. S1 (Supplementary Information 3). The
S-system equations for this structure are as follows:

d X1

dt
= α1 − β1 Xh11

1

d X2

dt
= β1 Xh11

1 − β2 Xh22
2

...
...

d Xi

dt
= βi−1 X

hi−1,i−1
i−1 − βi Xhii

i

...
...

d Xn

dt
= βn−1 X

hn−1,n−1
n−1 − βn Xhnn

n

(8)

The dimensionless form of Eq. (8) is expressed as

dx1

dt
= A1(1 − xh11

1 )

dx2

dt
= A2(xh11

1 − xh22
2 )

...
...

dxi

dt
= Ai (x

hi−1,i−1
i−1 − xhii

i )

...
...

dxn

dt
= An(x

hn−1,n−1
n−1 − xhnn

n )

(9)

where the dimensionless rate constants are as follows:

A1 = α1/X∗
1 = β1 X∗h11

1 /X∗
1, A2 = β1 X∗h11

1 /X∗
2 = β2 X∗h22

2 /X∗
2, . . . ,

Ai = βi−1 X
∗hi−1,i−1
i−1 /X∗

i = βi X∗hii
i /X∗

i , . . . ,

An = βn−1 X
∗hn−1,n−1
n−1 /X∗

n = βn X∗hnn
n /X∗

n (10)

Equation (10) provides the following relationship.

X∗
1 A1 = X∗

2 A2 = · · · = X∗
i Ai = · · · = X∗

n An . (11)
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Thus, Eq. (11) provides the following constraint for the linear structure:

Ai+1 = (X∗
1/X∗

i+1)A1 (i = 1, . . . , n − 1). (12)

In other words, all Ai (i = 2, . . . , n) are a function of only A1. As a result, Eq. (9)
can be expressed in terms of the unknown parameter A1. In a linear network structure,
the same constraint is also valid for cases with inhibition or activation. The simple
case study for a linear structure is discussed in Supplementary Information 1.

2.2.2 Branching and Confluent Structures

Let us consider a metabolic reaction network where metabolites X1 to Xm have a
linear structure, and Xm branches into Xm+1 and Xm+2, as in Fig. 1. The S-system
equations for this network system are given as

d X1

dt
= α1 − β1 Xh11

1

...
...

d Xm

dt
= βm−1 X

hm−1,m−1
m−1 − βm Xhmm

m

d Xm+1

dt
= αm+1 X

gm+1,m
m − βm+1 X

hm+1,m+1
m+1

d Xm+2

dt
= αm+2 X

gm+2,m
m − βm+2 X

hm+2,m+2
m+2

...
...

(13)

which give the following relationship at the branching point:

βm Xhmm
m = αm+1 X

gm+1,m
m + αm+2 X

gm+2,m
m . (14)

Fig. 1 Branched metabolic pathway model with inhibition and activation. Xi (i=1,…,4) denote metabolites.
The square enclosing X2 denotes that this metabolite is assumed to be unmeasurable in the “Case where
some metabolite concentrations are unmeasurable”
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Equation (13) can be expressed in dimensionless form as

dx1

dt
= A1(1 − xh11

1 )

...
...

dxm

dt
= Am(x

hm−1,m−1
m−1 − xhmm

m )

dxm+1

dt
= Am+1(x

gm+1,m
m − x

hm+1,m+1
m+1 )

dxm+2

dt
= Am+2(x

gm+2,m
m − x

hm+2,m+2
m+2 )

...
...

(15)

where the dimensionless rate constants are as follows:

A1 = α1/X∗
1 = β1 X∗h11

1 /X∗
1, . . . ,

Am = βm−1 X
∗hm−1,m−1
m−1 /X∗

m = βm X∗hmm
m /X∗

m,

Am+1 = αm+1 X
∗gm+1,m
m /X∗

m+1 = βm+1 X
hm+1,m+1
m+1 /X∗

m+1,

Am+2 = αm+2 X
∗gm+2,m
m /X∗

m+2 = βm+2 X
∗hm+2,m+2
m+2 /X∗

m+2, . . . (16)

A combination of Eqs. (14) and (16) gives the following relationship:

X∗
m Am = X∗

m+1 Am+1 + X∗
m+2 Am+2. (17)

Thus, Eq. (17) indicates that the dimensionless rate constant Am+2 can be expressed
as a function of the dimensionless rate constant before the branching point, Am , and
the other dimensionless rate constant at the branching point, Am+1, leading to the
following constraint:

Am+2 = (X∗
m Am − X∗

m+1 Am+1)/X∗
m+2. (18)

Confluent structures can be treated in a similar manner. The above equations are
generalized as follows. When the network has a branching point where the q fluxes
of pool X p proceed to the X p+ j ( j = 1, . . . , q) pools, the following constraint is
provided:

X∗
p Ap =

q∑

j=1

X∗
p+ j Ap+ j . (19)

When the network has a confluent structure at which the q fluxes from the X j

( j = 1, . . . , p) pools flow into pool X p (p > q), the following constraint is obtained:
q∑

j=1

X∗
p− j Ap− j = X∗

p Ap. (20)
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2.3 Reason for Assigning Constant Values to Kinetic Orders

It is not easy to determine all the kinetic parameters experimentally in a relatively large-
scale system. As the first step of the performance evaluation of the PENDISC method,
therefore, the present work assigns an average value of 0.5 or −0.5 to the kinetic
orders, and determines only the rate constants as unknown parameters by fitting the
solutions to S-system equations to the experimental data. This is because the kinetic
orders in the power-law equations (transformed from various forms of Michaelis–
Menten equations) mostly range from 0 to 1 (or −1 and 0 for inhibition), as shown
in Fig. S3 (Supplementary Information 3). The determination of all the parameters
including the kinetic orders will be discussed in a subsequent study.

The transient behaviors of metabolite concentrations in a network system are mainly
governed by the structure of a network. For example, in a linear structure where the
metabolites are lined up, variations in the metabolite concentrations are propagated in
downstream direction. The magnitudes of these concentration values and the times, at
which an increase or decrease in the concentration is reversed, are strongly controlled
by the reaction kinetics. In such variations, the rate constants are responsible not only
for the magnitudes of metabolite concentrations at each time point but also for shifting
reaction curves in the direction of the time axis. On the other hand, the kinetic orders
are closely associated with the shapes of the reaction curves, rather than their shift.
Thus, the rate constants given in this estimation play an important role in compensating
for the differences in the calculated values generated as a result of setting the kinetic
orders at 0.5 or −0.5.

2.4 Number of Unknown Parameters

For parameter estimation in a relatively large-scale metabolic reaction system, it is
very important to reduce the number of unknown parameters as much as possible.
This will enhance the rate of convergence, decrease the number of parameter values
grouped together, and reduce the estimation time. In an S-system model consisting of
N differential equations, the number of unknown parameters is 2N (N + 1). This can
be reduced to 2N when values of 0.5 or −0.5 are assigned to the kinetic orders. It can
be further reduced to N when parameter estimation is performed using the time-series
data of dimensionless metabolite concentrations. If the network structure is linear,
only one parameter becomes unknown. If the structure includes p branching points,
then the number of unknown parameters is increased up to p + 1(< N ).

2.5 Metabolic Reaction Network Models

2.5.1 Linear Metabolic Pathway Model with Inhibition

Consider the S-system equations derived from the linear network, as shown in Fig. S1
(Supplementary Information 3). The equations and initial values are given in Supple-
mentary Information 1.
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Fig. 2 Aspartate-derived amino acid biosynthesis model

2.5.2 Branched Metabolic Pathway Model with Inhibition and Activation

Consider the S-system equations derived from the network structure with a branched
metabolic pathway, as shown in Fig. 1 (Voit and Almeida 2004). The equations and
initial values are given in Supplementary Information 1.

2.5.3 Aspartate-Derived Amino Acid Biosynthesis Model

The aspartate-derived amino acid biosynthetic pathway in plants is controlled by sev-
eral feedback inhibitions and activations, and forms a relatively complicated network
structure (Fig. 2). The mathematical model for this system consists of seven differential
equations with flux expressions in the Michaelis–Menten form (Curien et al. 2009).
The kinetic parameters in the expressions have been determined via in vitro reconsti-
tution in the model plant A. thaliana. The performance of the PENDISC method is
investigated by considering the time-series data obtained from in silico calculations
as experimental data. The equations and initial values are given in Supplementary
Information 1.

2.6 Parameter Estimation

The calculations are performed using a g++ compiler running on Ubuntu Linux 12.04
with Intel(R) Core(TM) i7 CPU 870@2.93 GHz. The Levenberg–Marquardt method
is applied to the parameter estimation using a C program adopted from the literature
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(Press et al. 2002). To enhance the accuracy of numerical derivatives, a highly accurate
differentiation method (Shiraishi et al. 2007) is introduced. The χ2 evaluation function
is defined as

χ2(A) =
N∑

k=1

[
Xi,k − Xi,k(tk; A)

σk

]2

, (21)

where Xi,k is the concentration data of the metabolite Xi at the time point tk (or the
kth data point), Xi,k(tk ; A) is the calculated concentration of the metabolite Xi for the
dimensionless rate constant value A at the time point tk , andσk is the standard deviation.
The calculation is terminated when the relations [χ2(A0)−χ2(A1)]/ χ2(A0) ≤ 10−8

and χ2(A0) ≤ 10−5 are satisfied.

3 Results and Discussion

3.1 Performance Evaluation of the PENDISC Method

3.1.1 Evaluation of the Calculation Algorithm

The performance of the PENDISC method was evaluated using the branched metabolic
pathway model with inhibition and activation (shown in Fig. 1). Eleven data points
were produced for each evolution, and the initial values of unknown parameters were
all set to 5.

First, to verify the reliability of model parameters estimated from non-
dimensionalized equations, the true values were used for the kinetic orders, and only
A1 and A4 were estimated as unknown parameters. The result showed that the con-
verged values of A1 and A4 (15.82007531 and 8.85591652) are equivalent to their
true values to 10 significant digits. These values of A1 and A4 were then used to calcu-
late A2 and A3 (2.52077734 and 2.26931039). Consequently, α1, α2, α3, and α4 were
determined as 11.999994655, 7.99999807, 3.00000095, and 1.99999892, respectively,
and β1, β2, β3, and β4 were determined as 9.99999555, 2.99999928, 5.00000158, and
5.99999676, respectively. As expected, the values of αi and βi calculated from Ai (i=
1, 2, 3, 4) are almost equivalent to their respective true values. The calculated metabo-
lite concentrations are in perfect agreement with the time-series data, as shown in Fig.
3. These results validate the consistency of the calculation algorithm of the PENDISC
method.

Second, to evaluate the performance of the PENDISC method, the same parameter
estimation was carried out by setting the Ai as unknown values and inserting 0.5 or
−0.5 into the kinetic orders, instead of their true values. The agreement between the
calculated results and time-series data is not perfect but satisfactory. This indicates
that the solutions to the S-system equations can depict time-transient behaviors anal-
ogous to the time-series data, even when arbitrary constant values are used for the
kinetic orders, implying that the behavior of the metabolite concentrations is strongly
governed by the network structure of a metabolic reaction system. The time courses
of the calculated metabolite concentrations are similar to their true ones, although the
parameters used for the calculation are different. To prove that the rate constants play
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Fig. 3 Comparisons of calculated lines based on two estimated parameters and either true kinetic orders
(solid lines) or kinetic orders of 0.5 or −0.5 (broken lines) with 11 time-series data for each metabolite in
a branched metabolic pathway model with inhibition and activation

a more important role in compensating for the differences in the calculated values, the
kinetic orders were set to 0.25, 0.50, 0.75, and 1.00 (to their negative values for inhibi-
tion), and parameter estimations were performed in the same manner. The calculated
results indicated that the dimensionless rate constants estimated under each condition
are rather different, but they can still provide similar patterns for the behaviors of the
metabolite concentrations (Fig. S4: Supplementary Information 3).

Third, to analyze the robustness of the PENDISC method, the leave-one-out cross-
validation was performed (Fig. S5: Supplementary Information 3). Data points were
removed one by one from the 11 time-series data for all metabolites (Fig. S5), and
parameters were repeatedly estimated using the remaining 10 time-series data. The
results indicated that this method can estimate parameters successfully. Among these
removal operations, the performance of the PENDISC method decreased most when
the data at t = 0.5 were removed (shown by line P1, mean square error (MSE) = 4.258×
10−3). For comparison, when 11 time-series data were all used, the MSE was 5.293×
10−3. Although MSE increased when one data was removed from the time-series
data of each metabolite, the calculated result was not significantly different from that
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for the original data (Table S2: Supplementary Information 2). This implies that the
PENDISC method is robust.

Finally, to verify whether this method with fixed kinetic orders is practically applica-
ble, the predictive simulations were performed using the constructed mathematical
model. The concentrations of X1 − X4 at a steady state were perturbed by increasing
one of the metabolite concentrations by two times of its steady-state value at t= 0, and
the time courses of the metabolite concentrations calculated using the PENDISC model
were compared with the time-series data. The results indicated that the PENDISC
model provides metabolic behaviors comparable to the exact time-series data (Figure
S6: Supplementary Information 3).

3.1.2 Effects of the number of time-series data and initial guesses for Ai

The branched metabolic pathway model with inhibition and activation (Fig. 1) was used
to investigate the effects of the number of time-series data and initial guesses for Ai .
Experiments were performed using 11, 21, and 51 time-series data, and initial guesses
for Ai were all set at 5 and 10. Moreover, the following three cases were considered:
(1) all four rate constants are estimated; (2) linear pathway constraint is utilized; A3 is
substituted by A2 X∗

2/X∗
3 and only three rate constants, A1, A2, and A4, are estimated;

and (3) both linear and branching pathway constraints are utilized. A2 and A3 are sub-
stituted by function of A1 and A4 and only two rate constants, A1 and A4, are estimated.
The calculated results are shown in Fig. S7 (Supplementary Information 3); the dimen-
sionless rate constants determined are listed in Table S3 (Supplementary Information
2), and the calculation times and iteration numbers are given in Table S4 (Supplemen-
tary Information 2). The calculated lines are in good agreement with the time-series
data, regardless of the number of data points and initial guesses for Ai , while the
calculation time and iteration numbers increase with an increase in the number of data
points. This implies that the performance of the PENDISC method depends on data
quality rather than data quantity and it is, therefore, possible to shorten the calculation
time as a result of reducing the number of time-series data to a limitation where char-
acteristics of the time-transient behaviors of metabolite concentrations are retained.

3.1.3 Advantages of Introducing Constraints

The final values of the χ2 evaluation function, calculation times, and trial numbers in
the branched metabolic pathway model with inhibition and activation (Fig. 1) are listed
in Table S4 (Supplementary Information 2). It should be noted that the χ2 evaluation
function values for different numbers of time-series data are not directly comparable
because it expresses the sum of the squared differences between the metabolite con-
centration data and their calculated values, and therefore, it increases with an increase
in the number of time-series data. Nevertheless, the results pinpoint that a smaller num-
ber of unknown parameters tend to decrease the effect of the number of time-series
data and the magnitudes of the initial values for Ai on the agreement between the cal-
culated and real parameter values. A decrease in the number of unknown parameters
also reduces the calculation time and enhances the probability of convergence in the
parameter estimation. The PENDISC method enables a substantial reduction in the

123



PENDISC 1345

number of unknown parameters by introducing constraints. Obviously, this advantage
is useful in the analysis of relatively large-scale systems.

3.1.4 Case Where Some Metabolite Concentrations are Unmeasurable

Any analytical method cannot measure every metabolite concentration in a pathway
network. It is, therefore, important to test whether the PENDISC method is applica-
ble to a case where there are some unmeasurable metabolite concentrations in the
network.

Consider a case where X2 cannot be measured in the branched metabolic pathway
model with inhibition and activation (Fig. 1), and each time-series dataset for X1, X3,
and X4 has 11 data points. The constraints were again applied to the differential
equations for X1−X4, and both A1 and A4 were set as unknown parameters. Likewise,
A2 was set as an unknown parameter, because the steady-state concentration of X∗

2 is
unknown. Initial values for the dimensionless metabolite concentrations were set as
x10= 1.4/0.3996 = 3.5035, x30= 1.2/2.2284 = 0.5385, and x40= 0.4/0.1428 = 2.8011
(see Eqs. (S7) and (S10) in Supplementary Information 1). An arbitrary value must
be assigned to x2 because both X2 and X20 are unknown. For this value, we selected
the same value as that used in the previous calculation, i.e., x20= 2.7/2.0061 = 1.3459.
This is because our aim is to elucidate the extent to which the calculated result of X2
deviates from its actual time-series data when once uses the rate constants determined
using the value of A2 automatically obtained in the estimation of A1, A2, and A4.
The initial values for A1, A2, and A4 were all set to 5. The parameter estimation was
performed by solving the differential equations for x1 − x4, but the calculated values
were fitted only to the evolution of x1, x3, and x4.

The converged values of A1, A2, and A4 were 39.62943, 4.38212, and 23.82671,
respectively. The relation

A3 = A1 X∗
1 − A4 X∗

4

X∗
3

(22)

gives a value of 5.57941 for A3. In addition, the relation

X∗
2 = A1 X∗

1 − A4 X∗
4

A2
(23)

provides 2.83721 as the estimated steady-state value of X2, i.e., X∗
2 estimated. This

value is 41.43% higher than its true value (X∗
2= 2.00607). The initial value of X2

is given as follows: X20 = x20 × X∗
2 estimated = 1.3459 × 2.83721 = 3.8186. All

estimated dimensionless rate constants were used to calculate αi and βi . The results
are listed in Table S5 (Supplementary Information 2). The metabolite concentrations
calculated using the rate constants are compared with their respective time-series data
in the left column of Fig. 4. The calculated lines for X1, X3, and X4 are in good
agreement with their respective time-series data. On the other hand, the calculated
line for X2 is not entirely in good agreement with its original time-series data, because
the value of X∗

2 estimated was markedly different from its original value. Nevertheless,
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Fig. 4 Comparison of calculated lines based on (a) three estimated parameters using 11 time-series data
for each metabolite except X2 [left column], (b) two estimated parameters using 21 time-series data with
up to ±20 % noise for each metabolite [middle column], (c) two estimated parameters using 21 time-series
data with up to ±20 % noise for each metabolite except X2 [right column] in a branched metabolic pathway
model with inhibition and activation

it is interesting to note that the variation in the calculated values of X2 is very similar
to that in the original data.

When a value of the same order of magnitude as the initial values (Fig. S8: Supple-
mentary Information 3) of other dimensionless metabolite concentrations was assigned
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to x20, changes occurred not only for A2 and X∗
2 estimated, but also for A1, A3, and A4.

This, in turn, changed the calculated line for X2, whereas those for X1, X3, and X4
were almost the same as before. It is, therefore, deduced that the PENDISC method
enables us to construct a mathematical model, even when metabolite concentrations in
a network are partially unmeasurable. It should be noted that the calculated lines are not
identical to the true time-series concentrations because the steady-state concentrations
are estimated using measured data containing a large number of errors. Fortunately,
it seems that the calculated line successfully generates the behavior of the unmeasur-
able metabolite concentrations. This is because the metabolic behaviors are governed
mainly by the network structure, and the time courses of metabolite concentrations
tend to move or shift in different magnitudes when parameter values are different.
However, to predict the metabolic behaviors more accurately, one may make efforts
to measure the steady-state values of the unmeasurable metabolite concentrations by
introducing other different analytical instruments.

3.1.5 Treatment of Time-Series Data with Noise

Measured metabolite concentrations usually contain biological variations and analyt-
ical errors. The effect of noise on the probability of convergence was investigated
using the branched metabolic pathway model with inhibition and activation (Fig. 1).
Twenty-one time-series data with random noise of up to ±20% were produced for
each metabolite concentration (Fig. 4, middle column). The values of the time-series
data in the neighborhood of the steady-state condition (the last five data) were aver-
aged to obtain the experimental steady-state concentration for each metabolite (X∗

1=
0.41114, X∗

2= 1.86921, X∗
3= 2.20575, X∗

4= 0.13928). Again, A1 and A4 were set as
unknown parameters, and the initial guesses for dimensionless rate constants were all
set to 5. The parameter estimation provided 33.16106 and 32.19971 of A1 and A4,
respectively. These values and those for X∗

1 , X∗
2, X∗

3 , and X∗
4 were inserted into the rel-

evant equations to obtain A2 = 4.89464 and A3 = 4.14785. All the values were further
used to calculate αi and βi . The time courses of metabolite concentrations calculated
using the rate constants determined are compared with the true time-series data in Fig.
4 (middle column). The calculated lines are in pretty agreement with the time-series
data, indicating that the PENDISC method can also handle noisy time-series data
successfully.

3.1.6 Case for Time-Series Data Containing Both Noisy and Unmeasurable
Metabolite Concentrations

We further consider case where metabolite concentrations contain biological variations
and analytical errors, and some of the metabolite concentrations are unmeasurable in
the branched metabolic pathway model with inhibition and activation. Twenty-one
time-series data with random noise of up to ±20% were produced for each metabolite
concentration, and the concentration of X2 was assumed to be unmeasurable (Fig. 4,
right column). Parameters were estimated using the same algorithm, initial values,
and steady-state values as described in the previous sections. The values of A1 and A4
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were determined as 16.35916 and 14.07396, respectively, and the values of A2 and A3
were then calculated as 2.54958 and 2.16059, respectively. The calculated lines using
the determined values were in reasonable agreement with the time-series data with
noise, and the time-transient behaviors of the unmeasurable metabolite concentration
were predicted successfully.

The results indicate that the PENDISC method has high potential for handling both
noisy and unmeasurable metabolite concentration data. The method does not require
us to use true parameter values in the first step of parameter estimation and provides
calculated results close to the behavior of the time-series data of metabolite concen-
trations, which will allow us to estimate better parameter values and then construct a
useful mathematical model to analyze metabolic reaction systems.

3.2 Application of the PENDISC Method to an Actual Metabolic System

The aspartate-derived amino acid biosynthesis illustrated in Fig. 2 is used as a practical
application of the PENDISC method. It is assumed that the system is initially at a
steady-state value, and the l-aspartyl-4-phosphate concentration, X1, is increased by
two times of its steady-state value at t= 0. As a result, all the metabolite concentrations
start to change and finally return to their original steady-state values. Twenty-one
time-series data were produced in silico for each metabolite concentration. S-system
equations were derived from Fig. 2, and the kinetic orders in these equations were set
to 0.5 or −0.5. The resulting equations were rearranged using the relevant constraints.
Consequently, the number of unknown dimensionless rate constants was reduced from
seven to two.

Figure 5 compares the metabolite concentrations calculated using two, three, four,
and seven estimated rate constants (referred to as 2A, 3A, 4A, and 7A, respectively)
with their respective time-series data. The concentrations of l-aspartyl-4-phosphate
(X1), l-aspartate-semialdehyde (X2), and l-homoserine (X4) change rapidly, whereas
those of l-lysine (X3), O-phospho-l-homoserine (X5), l-threonine (X6), and l-
isoleucine (X7) change very slowly. This is because the stiffness ratio (defined as
the ratio of the maximum and minimum absolute values of real parts of eigenvalues) is
equal to 1.757 × 103(= 14.826995/8.4379835 × 10−3) which means that the system
is mildly stiff. The calculated results are not in good agreement with the data in the
cases of four and seven estimated parameters, whereas the situation is improved in the
case of three estimated parameters. Interestingly, the calculated lines for all metabo-
lites, including very slowly changing X6 and X7, were in very good agreement with
the time-series data in the case of two estimated parameters (Fig. S9: Supplementary
Information 3); the estimated parameter values for this case are listed in Table S6
(Supplementary Information 2). This implies that introducing the relevant constraints
allow us to reduce the number of parameters to be estimated, resulting in an increase
in fitting performance and also decreases in both iteration number and calculation
time. These advantages would make it easier to construct a mathematical model in a
relatively large-scale system.

A combination of decoupling and grid methods also allows us to roughly estimate
parameters in the construction of a coarse model (Iwata et al. 2013). It reduces the
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Fig. 5 Comparison of calculated lines based on two, three, four, and seven estimated parameters (repre-
sented by the symbols “2A,” “3A,” “4A,” and “7A,” respectively) with 21 time-series data for each metabolite
in an aspartate-derived amino acid formation model. The initial guesses were all set to 5

number of parameters greatly, which makes it easy to estimate the parameters, but
requires us to calculate the time rates of change of the metabolite concentrations (i.e.,
slopes) for the parameter estimation. Since this calculation requires us to carry out data
smoothing while handling noisy time-series data, the result of parameter estimation
may be affected by which smoothing method is chosen. On the other hand, although
the PENDISC method uses averaged values for the kinetic orders, it does not need
the slopes. Nevertheless, it can offer satisfactory behaviors for the metabolite concen-
trations. It is also potentially applicable to the case where true values are necessary
for the kinetic orders, since the number of rate constants to be estimated is halved
by non-dimensionalization of the S-system equations, which, in turn, increases the
probability of convergence. The number of rate constants can be further reduced by
the use of the constraints. For example, in a linear metabolic pathway, the estimation
of only one rate constant and kinetic order makes it possible to calculate the evolu-
tion of every metabolite concentration. The extension of the PENDISC method to the
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parameter estimation including kinetic order values will be discussed in a subsequent
study.

4 Conclusions

The present study proposed a simple method for constructing a mathematical model for
a metabolic reaction network, named the PENDISC method, in which the number of
parameters to be estimated is reduced by use of non-dimensionalized S-system equa-
tions with constraints, and then investigated its performance using three mathematical
models. As a result, the following conclusions are derived:

(1) The relevant constraints produced from a network structure are useful for reducing
the number of dimensionless rate constants significantly.

(2) Even when the values of 0.5 or −0.5 are used for the kinetic orders, the resulting
S-system model can successfully exhibit the dynamic behaviors of metabolite
concentrations analogous to the evolution of true ones.

(3) As the number of time-series data decreases, the agreement of the calculated
result with the time-series data increases and the iteration number exponentially
decreases, which results in a decrease in the calculation time.

(4) A significant reduction in the number of dimensionless rate constants as a result
of introducing the relevant constraints improves the chance of convergence.

(5) The PENDISC method can construct a mathematical model even when some of
metabolite concentrations in a network are unmeasurable, and the time-series data
include noise.

Acknowledgments This work was supported by the Japan Science and Technology Agency, CREST to
M.Y.H. and KAKENHI Grant No. 25119719 to F.S.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

Chou I-C (2006) Parameter estimation in biochemical systems models with alternating regression. Theor
Biol Med Model 3:1–11

Curien G, Bastien O, Robert-Genthon M, Cornish-Bowden A, Cardenas ML, Dumas R (2009) Understand-
ing the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol
Syst Biol 5:271

Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171
Iwata M, Shiraishi F, Voit EO (2013) Coarse but efficient identification of metabolic pathway system. Int J

Syst Biol 4:57–72
Jia G, Stephanopoulos GN, Gunawan R (2011) Parameter estimation of kinetic models from metabolic

profiles: two-phase dynamic decoupling method. Bioinformatics 27:1964–1970
Kutalik Z, Tucker W, Moulton V (2007) S-system parameter estimation for noisy metabolic profiles using

newton-flow analysis. IET Syst Biol 1:174–180
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C: the art of scientific

computing, 2nd edn. Cambridge University Press, New York
Savageau MA (1969a) Biochemical systems analysis I: some mathematical properties of the rate law for

the component enzymatic reactions. J Theor Biol 25:365–369

123



PENDISC 1351

Savageau MA (1969b) Biochemical systems analysis II: the steady-state solutions for an n-pool systems
using a power-law approximation. J Theor Biol 25:370–379

Savageau MA (1970) Biochemical systems analysis III: dynamic solutions using a power-law approxima-
tion. J Theor Biol 26:215–226

Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY (2009) Widely tar-
geted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns
in plants. Plant Cell Physiol 50:37–47

Shiraishi F, Savageau MA (1992) The tricarboxylic acid cycle in dictyostelium discoideum. III. Analysis
of steady state and dynamic behavior. J Biol Chem 267:22926–22933

Shiraishi F, Furuta S, Ishimatsu T, Akhter J (2007) A simple and highly accurate numerical differentiation
method for sensitivity analysis of large-scale metabolic reaction systems. Math Biosci 208:590–606

Vilela M, Borges CC, Vinga S, Vasconcelos AT, Santos H, Voit EO, Almeida JS (2007) Automated smoother
for the numerical decoupling of dynamics models, BMC Bioinform 8:305

Voit EO (2013) Biochemical systems theory: a review. ISRN Biomath 2013:1–53
Voit EO, Almeida J (2004) Decoupling dynamical systems for pathway identification from metabolic

profiles. Bioinformatics 20:1670–1681
Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

123


	PENDISC: A Simple Method for Constructing a Mathematical Model from Time-Series Data of Metabolite Concentrations
	Abstract
	1 Introduction
	2 Methods
	2.1 S-System Equations
	2.2 Fundamental Equations for Analysis
	2.2.1 Linear Structure
	2.2.2 Branching and Confluent Structures

	2.3 Reason for Assigning Constant Values to Kinetic Orders
	2.4 Number of Unknown Parameters
	2.5 Metabolic Reaction Network Models
	2.5.1 Linear Metabolic Pathway Model with Inhibition
	2.5.2 Branched Metabolic Pathway Model with Inhibition and Activation
	2.5.3 Aspartate-Derived Amino Acid Biosynthesis Model

	2.6 Parameter Estimation

	3 Results and Discussion
	3.1 Performance Evaluation of the PENDISC Method
	3.1.1 Evaluation of the Calculation Algorithm
	3.1.2 Effects of the number of time-series data and initial guesses for Ai
	3.1.3 Advantages of Introducing Constraints
	3.1.4 Case Where Some Metabolite Concentrations are Unmeasurable
	3.1.5 Treatment of Time-Series Data with Noise
	3.1.6 Case for Time-Series Data Containing Both Noisy and Unmeasurable Metabolite Concentrations

	3.2 Application of the PENDISC Method to an Actual Metabolic System

	4 Conclusions
	Acknowledgments
	References


